Dedicated
To
My Beloved Father

V. VENKAPPA SHETTY
FOREWORD

As one who has closely watched the author’s interest and involvement in concrete technology for the past several years, I have great pleasure in writing this foreword.

Concrete is by far the most widely used construction material today. The versatility and mouldability of this material, its high compressive strength, and the discovery of the reinforcing and prestressing techniques which helped to make up for its low tensile strength have contributed largely to its widespread use. We can rightly say that we are in the age of concrete.

It is easy to make concrete. There is an old saying that broken stone, sand, and cement make good concrete. But the same proportion of broken stone, sand and cement also make bad concrete. This is mainly because the quality of the end product depends as much, and perhaps more, on the man on the job as on the constituent materials. The difference between good concrete and bad concrete lies in quality control. Extensive research work was, therefore, carried out almost from the beginning of this century not only on the materials but also on the methods used for concrete making. Still, not many men on the job seem to make use of the known techniques for making good concrete which is necessary for achieving strong, durable, and economical construction. This textbook by Prof. M.S. Shetty will, therefore, help to generate a better awareness of the potential of concrete.

The book deals with several aspects of concrete technology and also covers the latest developments that have taken place in India and abroad. The coverage is comprehensive and complete. The properties of the constituent materials of concrete have been explained very lucidly in the text. The information on admixtures and on special concretes, such as air-entrained concrete, vacuum concrete, light-weight concrete, and gap-graded concrete, will be very useful to concrete engineers and those engaged in precast concrete construction. At many places in the text, the author touches upon some important, down-to-earth problems and gives specific recommendations based on his own knowledge and vast experience. The chapter on mix design gives simple and scientific procedures for the benefit of practising engineers and concrete technologists.

One of the welcome features of this book is the inclusion of detailed information on recent developments relating to fibre-reinforced concrete, sulphur-impregnated concrete, and different types of polymer concrete. The author has highlighted the potential of these new materials and has laid emphasis on the need for further research.

The text has been written in simple language and is supplemented by numerous illustrative examples, charts, and tables. The author has succeeded in presenting all the relevant information on concrete technology in a very effective manner. I am sure the book will be well received by students of concrete technology as well as practising engineers and research workers.

M. RAMAIAH
Director
Structural Engineering
Research Centre
Madras
ACKNOWLEDGMENTS

What made me interested in concrete technology was my association with Shri M.R. Vinayaka of Associated Cement Company, when he was working at Koyna Dam Concrete Research Laboratory. My interest was further enhanced while teaching this fascinating subject to the graduate and postgraduate students at the College of Military Engineering. I am grateful to them.

I gratefully acknowledge the following institutions and societies in the reproduction of certain tables, charts and information in my book:

The American Concrete Institute, the American Society for Testing and Materials, the Cement and Concrete Association, the Portland Cement Association, the Institute of Civil Engineers, London, Department of Mines, Ottawa, Canada, the Concrete Association of India, the Cement Research Institute of India, the Central Building Research Institute, Roorkee, the Structural Engineering Research Centre, Madras, the Central Road Research Institute, Delhi, and the Bureau of Indian Standards.

A book of this nature cannot be written without the tremendous background information made available by various research workers, authors of excellent books and articles which have been referred to and listed at the end of the chapters and at the end of this book. I am thankful to them.

I also wish to express my sincere thanks to the Commandant, College of Military Engineering for extending all facilities and words of encouragement while working on this book.

My special gratefulness is due to Smt. Brinda Balu and Dr. Balasubramanian for going through the manuscript with such diligence as to bring it into the present state.

My special thanks are due to Dr. M. Ramaiah, Director, Structural Engineering Research Centre, Madras, who obliged with a foreword to this book.

Lastly I am grateful to M/s S. Chand and Co., Ltd., for taking the responsibility of publishing this book.

Place: Pune, 1982

M.S. SHETTY
PREFACE TO THE SIXTH EDITION

It gives me immense pleasure that the book first published in 1982, has seen more than 25 reprints. The popularity of this book amongst students and practicing engineers has given me the encouragement to revise this book to make it more useful to them. The proposal and encouragement given by officers of S. Chand & Company to bring this Sixth Edition in multicolour should make the book more useful and attractive.

Concrete technology is becoming a major branch of civil engineering. It is becoming the backbone of infrastructural developments of every country. It has made tremendous advancement in the western and the eastern world. Though India is lagging behind, we are catching up fast with the rest of the world.

It can be recalled that in the preface to the first edition (1982) I had mentioned that the cement production in India was 22 million tons. This was about eight decades after we first started manufacturing Portland Cement (1904). It is heart warming to note that in the subsequent two decades after 1982 i.e. in 2004, the production of cement has crossed 120 million tons. Today we are the second largest producer of cement in the world, only behind China.

The quantity of concrete and other cement products made, utilising over 120 million tons of cement to cater for the tremendous infrastructural development that is taking place in the country, is making the concrete industry one of the biggest in monetary terms. Western and Eastern countries have been making concrete of strength M40, M80, M100 and over. In the recent past, we in India have started using concrete of strength M30, M50 and even M75. We have a long way to go to learn and practice the art and science of making High Performance Concrete (HPC) yet. The recent revision of IS 456, code of practice for plain and reinforced concrete is guiding concrete technologists to make strong and durable concrete.

I have grown older by twenty three years since I wrote the first edition. During these 23 years and especially in the last 15 years, I have had opportunities to deliver numerous lectures, training site engineers, conducting trials at large project sites, throughout the country which has made me once again a student of concrete technology and motivated me to revise this book.

Major revision has been carried out in Fifth and Sixth Edition. Topics, such as blended cements, use of admixtures and their use, field trials to find out their suitability, compatibility and dosage, RMe, pumping of concrete, latest methods mix design step by step, and extensive unconventional deliberation on durability, have been included.

Another special feature of this Sixth Edition is the inclusion of SELF COMPACTING CONCRETE, a revolutionary method of concrete construction. This innovative method which is found only in journals and seminar proceedings is rarely incorporated in textbooks. Similarly, other latest research information on Bacteria Concrete Geopolymer Concrete and Basalt fibre concrete are also included.

The book incorporates relevant information on numerous Indian standard specifications and code of practices relating to cement and concrete, including the latest revision of IS 456 of 2000 in respect of section 2 on materials, workmanship, inspection, testing and acceptance criteria. The book should serve as a vehicle to disseminate the information to all those who are interested in concrete construction.

I am sure that this multicolour revised edition will prove to be very useful to students of engineering, architects, practicing engineers and teachers in all engineering colleges. If this book helps to enthuse the readers and enable them to make better concrete at our construction sites, I would feel that my efforts are well rewarded.

I would like to express my sincere thanks to Shri Samir Surlaker, an authority on admixtures and construction chemicals in India, for helping me to enhance the technical content of this book. I am also thankful to the officers and staff of M/s S. Chand & Company Ltd. who were extremely amicable and helpful to bringing out this sixth edition in Multicolour.

Place: Pune
May 2005
M.S. SHETTY

(ix)
Cement mortar and concrete are the most widely used construction materials. It is difficult to point out another material of construction which is as versatile as concrete. It is the material of choice where strength, permanence, durability, impermeability, fire resistance and abrasion resistance are required. It is so closely associated now with every human activity that it touches every human being in his day to day living.

Cement concrete is one of the seemingly simple but actually complex materials. Many of its complex behaviours are yet to be identified to employ this material advantageously and economically. The behaviour of concrete with respect to long-term drying shrinkage, creep, fatigue, morphology of gel structure, bond, fracture mechanism and polymer modified concrete, fibrous concrete are some of the areas of active research in order to have a deeper understanding of the complex behaviour of these materials.

In any country, construction accounts for about 60 per cent of the plan outlay. Out of this, cement and cement product would account for more than 50 per cent. Today in India the annual consumption of cement is in the order of 22 million tonnes. It is estimated that the cost of mortar and concrete made from 22 million tons of cement would work out to about Rs. 4,000 crores which is about 1/5 of the plan outlay for the year 1982–83. It is in this context that the knowledge of concrete technology assumes importance.

Concrete is a site-made material unlike other materials of construction and as such can vary to a very great extent in its quality, properties and performance owing to the use of natural materials except cement. From materials of varying properties, to make concrete of stipulated qualities, an intimate knowledge of the interaction of various ingredients that go into the making of concrete is required to be known, both in the plastic condition and in the hardened condition. This knowledge is necessary for concrete technologists as well as for site engineers.

This book is written mainly to give practical bias into concrete-making practices to students of engineering and site engineers. Practical bias needs good theoretical base. Approach to practical solution should be made on the basis of sound theoretical concept. Sometimes, theory, however good, may not be applicable on many practical situations. This is to say, that particularly in concrete-making practices both theory and practice go hand in hand more closely than in many other branches of Engineering mainly because it is a site made material.

There are many good books written on this subject. But there are only a few books dealing with conditions, practice and equipment available in this country. Moreover, most of the books refer to only British and American standards. It has been the endeavour of the author to give as much information as possible about the Indian practice, Indian standard specifications and code of practices for concrete making. If this book helps the reader to make better concrete in the field, my efforts, I feel, are rewarded.

Place: Pune

M. S. SHETTY
CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. CEMENT</td>
<td>1–26</td>
</tr>
<tr>
<td>General</td>
<td>1</td>
</tr>
<tr>
<td>Early History of Modern Cement</td>
<td>2</td>
</tr>
<tr>
<td>Manufacture of Portland Cement</td>
<td>5</td>
</tr>
<tr>
<td>Wet Process</td>
<td>6</td>
</tr>
<tr>
<td>Dry Process</td>
<td>9</td>
</tr>
<tr>
<td>Chemical Composition</td>
<td>14</td>
</tr>
<tr>
<td>Hydration of Cement</td>
<td>17</td>
</tr>
<tr>
<td>Heat of Hydration</td>
<td>18</td>
</tr>
<tr>
<td>Calcium Silicate Hydrates</td>
<td>19</td>
</tr>
<tr>
<td>Calcium Hydroxide</td>
<td>20</td>
</tr>
<tr>
<td>Calcium Aluminate Hydrates</td>
<td>21</td>
</tr>
<tr>
<td>Structure of Hydrated Cement</td>
<td>22</td>
</tr>
<tr>
<td>Transition Zone</td>
<td>22</td>
</tr>
<tr>
<td>Water Requirements for Hydration</td>
<td>25</td>
</tr>
<tr>
<td>2. TYPES OF CEMENT AND TESTING OF CEMENT</td>
<td>27–65</td>
</tr>
<tr>
<td>Types of Cement</td>
<td>28</td>
</tr>
<tr>
<td>ASTM Classification</td>
<td>28</td>
</tr>
<tr>
<td>Ordinary Portland Cement</td>
<td>29</td>
</tr>
<tr>
<td>Rapid Hardening Cement</td>
<td>30</td>
</tr>
<tr>
<td>Extra Rapid Hardening Cement</td>
<td>30</td>
</tr>
<tr>
<td>Sulphate Resisting Cement</td>
<td>31</td>
</tr>
<tr>
<td>Portland Slag Cement</td>
<td>31</td>
</tr>
<tr>
<td>Application of GGBS Concrete</td>
<td>33</td>
</tr>
<tr>
<td>Quick Setting Cement</td>
<td>33</td>
</tr>
<tr>
<td>Super Sulphated Cement</td>
<td>34</td>
</tr>
<tr>
<td>Low Heat Cement</td>
<td>34</td>
</tr>
<tr>
<td>Portland Pozzolana Cement</td>
<td>35</td>
</tr>
<tr>
<td>Advantages of PPC</td>
<td>36</td>
</tr>
<tr>
<td>Grading of PPC</td>
<td>37</td>
</tr>
<tr>
<td>Application</td>
<td>37</td>
</tr>
<tr>
<td>Air-Entraining Cement</td>
<td>37</td>
</tr>
<tr>
<td>Coloured Cement</td>
<td>38</td>
</tr>
<tr>
<td>Hydrophobic Cement</td>
<td>39</td>
</tr>
<tr>
<td>Masonry Cement</td>
<td>39</td>
</tr>
<tr>
<td>Expansive Cement</td>
<td>40</td>
</tr>
<tr>
<td>IRS-T40 Special Grade Cement</td>
<td>40</td>
</tr>
<tr>
<td>Oil-Well Cement</td>
<td>41</td>
</tr>
<tr>
<td>Rediset Cement</td>
<td>41</td>
</tr>
</tbody>
</table>
Properties of Rediset 41
Applications 42
High Alumina Cement 42
Hydration of High Alumina Cement 42
High Alumina Cement Concrete 43
Refractory Concrete 44
Very High Strength Cement 45
Macro-defect free Cement 45
Densely Packed System 45
Pressure Densification and Warm Pressing 45
High Early Strength Cement 46
Pyrament Cement 46
Magnesium Phosphate Cement 46

Testing of Cement
Field Testing 47
Fineness Test 48
Sieve Test 49
Air Permeability Method 49
Standard Consistency Test 50
Setting Time Test 50
Initial Setting Time 52
Final Setting Time 53
Strength Test 53
Soundness Test 54
Heat of Hydration 55
Chemical Composition Test 56
Test Certificate 56

3. AGGREGATES AND TESTING OF AGGREGATES 66-118
General 66
Classification 67
Source 67
Aggregates from Igneous Rocks 68
Aggregates from Sedimentary Rocks 68
Aggregates from Metamorphic Rocks 68
Size 69
Shape 70
Texture 73
Measurement of Surface Texture 74
Strength 74
Aggregate Crushing Value 75
Aggregate Impact Value 76
Aggregate Abrasion Value 76
Deval Attrition Test 76
Dorry Abrasion Test 76
Los Angeles Test 77
Modulus of Elasticity 77
Bulk Density 78
Specific Gravity 78
Absorption and Moisture Content 78
Bulking of Aggregate 80
Measurement of Moisture Content of Aggregates 81
- Drying Method 82
- Displacement Method 82
- Calcium Carbide Method 82
- Electrical Meter Method 82
- Automatic Measurement 82
Cleanliness 83
Soundness of Aggregate 85
Alkali-Aggregate Reaction 85
- Factors Promoting Alkali-Aggregate Reaction 86
- High Alkali Content in Cement 88
- Availability of Moisture 89
- Temperature Condition 89
- Mechanism of Deterioration of Concrete 89
- Control of Alkali Aggregate Reaction 89
Thermal Properties 90
Grading of Aggregates 91
- Sieve Analysis 93
- Combining Aggregates to obtain Specified Gradings 94
Specific Surface and Surface Index 96
- Standard Grading Curve 100
Crushed Sand 105
Gap Grading 107
Testing of Aggregates 107
- Test for Determination of Flakiness Index 107
- Test for Determination of Elongation Index 109
- Test for Determination of Clay and Fine Silt 110
- Test for Determination of Organic Impurities 111
- Test for Determination of Specific Gravity 112
- Test for Bulk Density and Voids 112
Mechanical Properties of Aggregates 113
- Test for Aggregate Crushing Value 113
- Test for “Ten per cent Fines” Value 114
- Test for Aggregate Impact Value 114
- Test for Aggregate Abrasion Value 115

4. WATER 119-123
- Qualities of Water 119
- Use of Sea Water for Mixing Concrete 122

5. ADMIXTURES AND CONSTRUCTION CHEMICALS 124-217
- General 124
- Admixtures 125
- Construction Chemicals 126
- Plasticizers (Water Reducers) 126
Action of Plasticizers 128
Dispersion 128
Retarding Effect 128
Superplasticizers (High Range Water Reducers) 129
Classification of Superplasticizer 130
Effect of Superplasticizers on Fresh Concrete 131
Compatibility of Superplasticizers and Cement 131
Factors Effecting Workability 136
Type of Superplasticizers 136
Dosage 136
Mix Composition 137
Variability in Cement Composition 137
Mixing Procedure 137
Equipment 138
Site Problems in the use of Superplasticizers 138
Slump Loss 140
Steps for Reducing Slump Loss 140
Other Potential Problems 142
Effect of Superplasticizers on the Properties of Hardened Concrete 143
New Generation Superplasticizers 144
Carboxylated Acrylic Ester (CAE) 144
Multicarboxylatether (MCE) 147
Retarders 148
Retarding Plasticizers 149
Accelerators 149
Accelerating Plasticizers 158
Air-entraining Admixtures 158
Air-entraining Agents 159
Factors Affecting Amount of Air-entrainment 159
The Effect of Air-entrainment on the Properties of Concrete 160
Resistance to Freezing and Thawing 161
Effect on Workability 162
Effect on Strength 163
Effect on Segregation and Bleeding 166
Effect on Permeability 169
Effect on Chemical Resistance 169
Effect on Sand, Water and Cement Content 169
Unit Weight 170
Alkali Aggregate Reaction 170
Modulus of Elasticity 170
Abrasion Resistance 170
Optimum Air Content in Concrete 171
Measurement of Air Content 171
Gravimetric Method 171
Volumetric Method 173
Pressure Method 173
The Water Type Meter 173
Pozzolanic or Mineral Admixtures 174
6. **FRESH CONCRETE**

Workability

Factors Affecting Workability

- Water Content
- Mix Proportions
- Size of Aggregate
- Shape of Aggregate
- Surface Texture
- Grading of Aggregate
- Use of Admixture

Measurement of Workability

- Slump Test
- K-Slump Tester
- Remarks
- Compacting Factor Test
- Flow Test
- Flow Table Apparatus

Accessory Procedure

Kelly Ball Test

- Vee Bee Consistometer Test

Segregation

Bleeding

- Method of Test for Bleeding
7. **STRENGTH OF CONCRETE**

General 298
Water / Cement Ratio 299
Gel / Space Ratio 301
Gain of Strength with Age 303
Accelerated Curing Test 306
Maturity Concept of Concrete 306
Effect of Maximum Size of Aggregate 311

Curing methods 279
Water curing 279
Membrane curing 280
Application of Heat 281
Steam curing 282
High Pressure Steam curing 287
Curing by Infra-red Radiation 288
Electrical curing 289
Miscellaneous Methods of Curing 289
When to Start Curing 289
Finishing 291
Formwork Finishes 291
Surface Treatment 292
Exposed Aggregate Finish 293
Bush Hammering 293
Applied Finish 293
Miscellaneous Finish 294
Wear Resistant Floor Finish 294
Requirement of a Good Finish 295
Grinding and Polishing 295
Craziness 295
Whisper Concrete Finish 296
8. **ELASTICITY, CREEP AND SHRINKAGE** 325-348

Elastic Properties of Aggregate 325
- Relation between Modulus of Elasticity and Strength 328
- Factors Affecting Modulus of Elasticity 329
- Dynamic Modulus of Elasticity 331
- Poisson's Ratio 332
Creep 332
- Rheological Representation of Creep 333
- Macroscopic Rheological Approach 333
- Microscopic Rheological Approach 334
- Hydration under Sustained Load 335
- Measurement of Creep 336
Factors Affecting Creep 339
- Influence of Aggregate 339
- Influence of Mix Proportions 339
- Influence of Age 339
Effect of Creep 339
Shrinkage 340
- Plastic Shrinkage 341
- Drying Shrinkage 343
Factors Affecting Shrinkage 344
- Moisture Movement 347
- Autogeneous Shrinkage 347
- Carbonation Shrinkage 347

9. **DURABILITY OF CONCRETE** 349-419

General 349
Strength and Durability Relationship 350
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkali-Aggregate Reaction</td>
<td>394</td>
</tr>
<tr>
<td>Acid Attack</td>
<td>395</td>
</tr>
<tr>
<td>Concrete in Sea Water</td>
<td>396</td>
</tr>
<tr>
<td>Carbonation</td>
<td>398</td>
</tr>
<tr>
<td>Rate of Carbonation</td>
<td>398</td>
</tr>
<tr>
<td>Measurement of Depth of Carbonation</td>
<td>400</td>
</tr>
<tr>
<td>Chloride Attack</td>
<td>400</td>
</tr>
<tr>
<td>Corrosion of Steel (Chloride Induced)</td>
<td>402</td>
</tr>
<tr>
<td>Corrosion Control</td>
<td>404</td>
</tr>
<tr>
<td>Metallurgical Methods</td>
<td>405</td>
</tr>
<tr>
<td>Corrosion Inhibitors</td>
<td>405</td>
</tr>
<tr>
<td>Coatings to Reinforcement</td>
<td>406</td>
</tr>
<tr>
<td>Fusion Bonded Epoxy Coating</td>
<td>407</td>
</tr>
<tr>
<td>Galvanised Reinforcement</td>
<td>408</td>
</tr>
<tr>
<td>Cathodic Protection</td>
<td>408</td>
</tr>
<tr>
<td>Coatings to Concrete</td>
<td>408</td>
</tr>
<tr>
<td>Design and Detailing</td>
<td>409</td>
</tr>
<tr>
<td>Nominal Cover to Reinforcement</td>
<td>409</td>
</tr>
<tr>
<td>Crack Width</td>
<td>411</td>
</tr>
<tr>
<td>Deterioration of Concrete by Abrasion, Erosion and Cavitation</td>
<td>411</td>
</tr>
<tr>
<td>Effects of Some Materials on Durability</td>
<td>412</td>
</tr>
<tr>
<td>Action of Mineral Oils</td>
<td>412</td>
</tr>
<tr>
<td>Action of Organic Acids</td>
<td>412</td>
</tr>
<tr>
<td>Vegetables and Animal Oils and Fats</td>
<td>412</td>
</tr>
<tr>
<td>Action of Sugar on Concrete</td>
<td>413</td>
</tr>
<tr>
<td>Action of Sewage</td>
<td>413</td>
</tr>
<tr>
<td>Surface Treatments of Concrete</td>
<td>413</td>
</tr>
<tr>
<td>Maximum Cement Content</td>
<td>415</td>
</tr>
<tr>
<td>Concluding Remarks on Durability</td>
<td>418</td>
</tr>
</tbody>
</table>

10. TESTING OF HARDENED CONCRETE 420-457

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Test</td>
<td>421</td>
</tr>
<tr>
<td>Moulds</td>
<td>422</td>
</tr>
<tr>
<td>Compacting</td>
<td>422</td>
</tr>
<tr>
<td>Compaction by Hand</td>
<td>423</td>
</tr>
<tr>
<td>Compaction by Vibration</td>
<td>423</td>
</tr>
<tr>
<td>Capping Specimens</td>
<td>424</td>
</tr>
<tr>
<td>Neat cement</td>
<td>424</td>
</tr>
<tr>
<td>Cement mortar</td>
<td>424</td>
</tr>
<tr>
<td>Sulphur</td>
<td>424</td>
</tr>
<tr>
<td>Hard plaster</td>
<td>425</td>
</tr>
<tr>
<td>Curing</td>
<td>425</td>
</tr>
<tr>
<td>Making and Curing Compression Test Specimen in the Field</td>
<td>425</td>
</tr>
<tr>
<td>Failure of Compression Specimen</td>
<td>425</td>
</tr>
<tr>
<td>Effect of Height / Diameter Ratio on Strength</td>
<td>427</td>
</tr>
<tr>
<td>Comparison between Cube and Cylinder Strength</td>
<td>428</td>
</tr>
<tr>
<td>Flexural Strength of Concrete</td>
<td>428</td>
</tr>
<tr>
<td>Determination of Tensile Strength</td>
<td>429</td>
</tr>
</tbody>
</table>
Procedure

Placing of Specimen in the Testing Machine 431
Indirect Tension Test Methods 433
Ring Tension Test
 Advantage of ring tension test 434
 Limitations of ring tension test 434
Double Punch Test 434
Factors Influencing the Strength Results 435
Test Cores 436
 Strength of cores 437
Non-Destructive Testing Methods 437
 Schmidt's Rebound Hammer
 Limitation 439
 Rebound number and strength of concrete 440
Penetration Techniques 441
Pullout test 444
Dynamic or Vibration Method 444
 Resonant Frequency Method 445
 Usefulness of resonant frequency method 445
Pulse Velocity Method 446
 Techniques of measuring pulse velocity through concrete 447
 Factors affecting the measurement of pulse velocity 447
 Smoothness of contact surface under test 447
 Influence of path length on pulse velocity 448
 Temperature of concrete 448
 Moisture condition of concrete 448
 Presence of reinforcement 448
 Accuracy of measurement 449
Applications 449
 Establishing uniformity of Concrete 449
 Establishing acceptance criteria 449
 Determination of pulse modulus of elasticity 450
 Estimation of strength of concrete 450
 Determination of setting characteristics of concrete 450
 Studies on durability of concrete 450
 Measurement of deterioration of concrete due to fire exposure 451
Relationship between Pulse Velocity and Static Young's Modulus of Elasticity 452
Combined Methods 452
Radioactivity Methods 452
Nuclear Methods 453
Magnetic Methods 454
Electrical Methods 454
Tests on Composition of Hardened Concrete 454
 Determination of Cement Content 454
 Determination of Original w/c Ratio 455
Physical Method 455
Accelerated Curing Test 456

(xxii)
11. **CONCRETE MIX DESIGN**

General 458
Concept of Mix Design 459
Variables in Proportioning 459
Various Methods of Proportioning 460
Statistical Quality Control of Concrete 460
Common Terminologies 461
Calculation of Standard Deviation and Coefficient of Variation 463
Relation between Average Design Strength and Specified Minimum Strength 463
American Concrete Institute Method of Mix Design 466
Data to be Collected 466
Example: ACI Committee 211.1-91 Method 471
Road Note Number 4 Method 473
DOE Method of Concrete Mix Design 474
Example — DOE Method 477
Concrete Mix Design Procedure for Concrete with Fly-Ash 482
Example of Mix Design with Fly-Ash with DOE Method 482
Mix Design for Pumpable Concrete 484
Example: Basic Design Calculations for a Pumpable Concrete Mix 488
Indian Standard Recommended Method of Concrete Mix Design 489
Illustrative Example of Concrete Mix Design 495
Rapid Method 498
Steps of Mix Design based on rapid method 499
Sampling and Acceptance Criteria 500
Frequency of Sampling 500
Test Specimen 501
Test Results 501
Acceptance Criteria 502
Compressive Strength 502
Flexural Strength 502
Inspection and Testing of Structures 502
Core Test 502
Load Test for Flexural Member 502
Non-destructive Test 503

12. **SPECIAL CONCRETE AND CONCRETING METHODS** 504-607

Special concrete 504
Light-weight concrete 506
Pumice 506
Diatomite 507
Scoria 507
Volcanic Cinders 507
Saw Dust 507
Rice Husk 507
Brick Bats 508
Cinder, Clinker and Breeze 508
Foamed Slag 508
Bloated Clay 509
Sintered Fly Ash 509
Exfoliated Vermiculite 509
Expanded Perlite 509
Light-weight Aggregate Concrete 510
Structural Light-weight Concrete 513
Workability 513
Design of Light-weight Aggregate Concrete Mix 514
Mixing Procedure 514
Aerated Concrete 514
Properties 516
No-fines Concrete 517
Mix Proportion 517
Drying Shrinkage 518
Thermal Conductivity 519
Application 519
High Density Concrete 520
Types of Radiation Hazards 521
Shielding Ability of Concrete 521
Concrete for Radiation Shielding 522
Sulphur-Infiltrated Concrete 525
Application 526
Fibre Reinforced Concrete 526
Fibres used 527
Factors Effecting Properties 528
Relative Fibre Matrix Stiffness 528
Volume of Fibres 528
Aspect Ratio of Fibres 529
Orientation of Fibres 529
Workability 530
Size of coarse Aggregate 530
Mixing 530
Application 531
Glass Fibre Reinforced Cement 531
Current Development in (FRC) 532
High Fibre Volume Micro-Fibre System 532
Slurry Infiltrated Fibre Concrete 532
Compact Reinforced Composites 532
Polymer Concrete 532
Type of Polymer Concrete 533
Polymer Impregnated Concrete 533
Polymer Cement Concrete 534
Polymer concrete 534
Partially Impregnated Concrete 535
Properties of Polymer Impregnated Concrete 536
Stress-Strain Relationship 536
Compressive Strength 536
Tensil Strength 537
Creep 539
Shrinkage due to Polymerisation 539
Durability 539
Water Absorption 540
Coefficient of Thermal Expansion 540
Experience of Delhi Metro Project	590
Experience of Mock-up Trials at Tarapur Atomic Power Project	591
Use of SCC Kaiga Trials at SERC Chennai	592
Study at Hong Kong	595
How economical is Self Compacting Concrete	597
Bacterial Concrete	598
Experimental Investigations	598
Zeopolymer Concrete	599
Basalt fibre concrete and concre reinforced with basalt fibre reinforcements	602

General Reference Books 608-611

List of Indian Standard Specifications and Code of Pratices, Related to Cement and Concrete 612-616

Subject Index 617-624
SARDAR SAROVAR DAM: Sardar Sarovar Project is an Inter-State Multi-Purpose project of National importance. It is one of the largest projects under implementation anywhere in the world.
THE IDUKKI HYDROELECTRIC PROJECT, KERALA: The reservoir covers nearly 60 square kilometres and has a catchment of 649 square km. Water from the reservoir is taken down to the underground power house at Moolamattom through an underground tunnel, yielding an average gross head of 2182 feet (665 metres). The project has an installed capacity of 780 MW with firm power potential of 230 MW at 100 per cent load factor.

THE BHAKRA DAM is a majestic monument across river Sutlej. The construction of this project was started in the year 1948 and was completed in 1963. It is 740 ft. high above the deepest foundation as straight concrete dam being more than three times the height of Qutab Minar. Bhakra Dam is the highest Concrete Gravity dam in Asia and Second Highest in the world.

SAI GANGA approach canal for water supply to Chennai Metro.
DELHI METRO Railway Station under construction.

THE BAHÁ'Í HOUSE OF WORSHIP known as the Lotus Temple, built near New Delhi.

Diamond shaped ‘MANI KANCHAN’ – Gem & Jewellery Park at Kolkata.

Unconventional building with pleasing architecture.
TARAPUR ATOMIC POWER PROJECT: Reactor Building no. 3 & 4.

Fully automatic construction of concrete pavement.

A view of large oval shaped dome under construction over Connaught Place Metro Railway Station. It is going to be a new landmark over Delhi Metro. It will be a modern version of Palika garden – A pride feature of Delhi Metro Project.

Sky Bus Metro, Goa

(XXX)
SOME LANDMARK HIGHRISE BUILDINGS IN THE WORLD

Figures on the top is the strength of concrete in MPa

*S Reinforced concrete frame
† Composite concrete/steel frame
** Also includes one experimental column of 117 MPa

SOME HIGHRISE BUILDINGS AROUND THE WORLD

Eiffel Tower
Chrysler Building
Empire State Building
John Hancock Building
World Trade Center
Sears Tower Center
Hong Kong Bank
First Interstate Bank
Bank of China
Petronas Towers

321 m 319 m 381 322 m 417 and 415 m 443 m 179 m 219 m 369 m 451 m

(xxxi)
CHANNEL TUNNEL RAIL LINK (UK).
Tunnel diameter: 6.84 m and 8.15 m. Number of segments 9+key. Segment thickness: 350 mm. Concrete grade: 60 MPa. Dramix steel fibre reinforcement is used for casting segments without conventional steel.

PETRONAS TWIN TOWERS in Kuala Lumpur Malaysia: One of the tallest (451 m.) buildings in the world.

...and many many more to expand and reshape the world we live in, — all in concrete.

(xxxii)